If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2-60=0
a = 1; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·1·(-60)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*1}=\frac{0-4\sqrt{15}}{2} =-\frac{4\sqrt{15}}{2} =-2\sqrt{15} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*1}=\frac{0+4\sqrt{15}}{2} =\frac{4\sqrt{15}}{2} =2\sqrt{15} $
| y^2+46=0 | | m^2+18=-6 | | -4.12-0.1v=19.8+1.2v | | 3h-19h+7=-9-17h | | 6x+5=65-8 | | p^2=82 | | 2(3x-2)^2=72 | | 18v-4=17+15v | | n^2-85=36 | | -0.6q+11.36=6.5q | | 90=5y-3+5y-3+4y+3+4y+3 | | 7f+9=-18+4f | | 4k^2+9k+2=0 | | 19d=18d-17 | | 2(r=4)=5(r-7) | | 106=3x+2+3x+2+2x+1+2x+1 | | v^2-68=76 | | 4(x*x*x)+5x=25 | | 6.8-3.6f=19.09-13.35-3.7f | | f^2=121 | | 84=180−16t^2 | | 14w+11-9w=-9+4w | | 7=x=3 | | -j=19-2j | | 11.53+3.9z=3.5z+8.49 | | 3x-5=-48+-40x | | 19-k=-9k-19-10 | | 5+3/20=7/10x | | (2+x)*5=11 | | 4+7x=-20+6 | | f/21=29 | | y=-2.17+12 |